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PhD Cardiff University
(2006 2010)
Computer Vision
* Machine Learning
» Search Optimisation
« Grading Classification
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Background

PDRA Swansea University
(2010-2013)

* Visualisation

« Data Analytics

« Machine Learning
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Background

PDRA University of Oxford 23?258‘
(2013 2015)
Cyber security

* Insider Threat Detection
« Machine Learning
* Visual Analytics
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Background

Senior Lecturer at UWE

(2015-Present)

« Security Data Analytics and
Visualisation

* (Inter) Active Machine Learning

* Human-Machine Collaboration
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Today

« Corporate Insider Threat Detection

« Automated Detection of Insider Threat
 Visual Analytics of Insider Threat Detection
« Active Learning for Insider Threat Detection

* Future Directions
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Corporate Insider Threat
Detection

« What is an insider threat?

o Someone with privileged access and knowledge of an organisation,
who uses this in a way that is detrimental to the operation of the
organisation

— E.g., employees, management, stakeholders, contractors.
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Corporate Insider Threat
Detection

What is an insider threat?

o Examples threats may include intellectual property theft, data fraud,
system sabotage, and reputational damage.

o Typically, a threat would be initiated by a trigger and a motive (e.g.,
personal financial difficulties result in theft).
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2015 Vortmetric Insider
Threat Report

o “939%o of U.S. organisations polled responded as being vulnerable to
insider threats”.

o “599% of U.S. respondents stated that privileged users pose the biggest
threat to their organisation”
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Defending Against the Wrong

Enemy: 2017 SANS Insider

Threat Survey

Which category of insider has the potential to be the most detrimental

to your organization? Select the best answer.
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Figure 11. Malicious and Negligent Employees Potentially Damaging

Key Results

of respondents did not know the potential

4 5% for financial losses associated with an insider
incident, while another 33% were unable to
place a value on the losses

o ® haveaformalincident response plan with
] 8 o provisions for insider attacks, while 49% are
developing such programs

o\ Delieve they've never experienced an insider
62 o attack, but 38% admit their detection and
prevention capabilities are ineffective

rate malicious insiders as the most

4 O% damaging threat vector they face, and 36%
rate the accidental or negligent insider as
most damaging



Defending Against the Wrong
Enemy: 2017 SANS Insider
Threat Survey

Has your organization placed a financial value in U.S. dollars on its

potential loss from an insider threat? If so, which of the following ranges How effective do you consider your insider threat prevention and
best reflects your estimated value of loss? detection methods to be?

50%
0% : = Very effective. We have proven tools and

1 techniques against attack.
o : = Effective. We are confident we have selected
20% +— the best tools and techniques but have not used

4 them operationally.
10% T

= Not effective. We are in the process of re-

oI e e W W W | %% evaluating our processes.
g 4 & & g & 3 z z
£ a 8 g g g a ° 5 = Not applicable. We are not concerned about
s 2 3 g > 2 2 @ 8 insider threats.
s 5 - - - v o
% § § g = Unknown/No opinion
° s a a
z

Figure 4. Values of Potential Loss Figure 10. Efficacy of Insider Threat Prevention and Detection*
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How may we attempt to
detect insider threat?

- What data can we gather about users?
_ _ each user per day to
o Log-on, E-mail, USB, File access, Web access? characterize the user
o Job role (any other HR related data)? behaviour

Activity

Type Group
«  What kind of ‘features’

can we calculate based logon
?
on users: usb_insert _hourly_usage__

http _new_attribute_for_device_
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How may we attempt to
detect insider threat?

« How can we ‘detect’ from our features?
o Calculate distances from the norm? N rrpsamn

o Use dimensionality reduction (e.g.,
PCA, t-SNE) to assess distances?

o Thresholding to flag suspicious
activities for user

there is suspicious
activity
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How may we attempt to
detect insider threat?

How do we know that our features are well-selected?
How can we inspect the performance of this detector?
How do we know that the ‘score’ of the detector is valid?
How can we report false positives to inform our system?

o We need the human analyst,
and we need visual analytics to assist them
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Insider Threat Visualisation




How can we assess features
to identify anomalies?




Logon_anomaly Logon_duration_anomaly Logofl_anomaly  Insert_anomaly Inset_duration_anomalyRemove_anomaly  email_anomaly  htp_anomaly ie_anomaly
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How can we report false
positives and reconfigure our
model?
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How can we assess detection
model in context of activity?
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Overview

« Charts provide an interactive overview
of selected summary statistics (e.g., 1
amount of activity, deviation of activity). ?

« Support filtering (date range, selection).
o Zoomed view of activity by date.
o Contextual view of activity by date.
o Activity bar chart by job role.
o Activity bar chart by individual.
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Projection View (1197 data records)

Filter and Zoom e-

 Interactive PCA [Jeong et al.] o

o Scatter plot view of user daily activity .
based on PCA. T T

o Parallel co-ordinates shows linked view
between plot and profile features. i

o Can identify groups of outliers, and o ©
what features contribute towards the
groupings. ° ° )

Selection: 2010-03-06 00:00:00 ONS0995 Director
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Selection: usb_insert_new_activity_for_this_device_for_user
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Filter and Zoom

« Dragging points on scatter plot performs I D B

inverse PCA. o

o Analyst can examine relationship o
between the projection space and the ’ o ’
original feature space. i o e

o Can be used to identify the 0 o ©
contribution or 'usefulness’of each
feature for refinement of detection
model (e.g., apply weighting function alo B La T80 B2 U0
to PCA). e SELLECD SRR Pt
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Detail View

UWE

Bristol

Activity plot that maps user and role Detail View
activity to time (supports either polar or
Cartesian grid layout).

Comparison of user activity on a daily
basis, and against others in the same job
role.

Could potentially be used in conjunction
with other data if available (e.g., HR
records, performance reviews).

Selection:
Date: 9-3-2010 0:57
User: ONS0995

PC: PC-3585
Activity: Insert

University
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England

Blue activity shows USB drive insert and removal

Late night usage + new observation for this role = threat!
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User: ONS0995
PC: PC-3585
Activity: Insert



Role Overview

«  We can use a ‘glyph’
visualisation approach
for observing role
overviews.

« 6 of the 18 roles have
‘activity of interest’
(flagged by circle)

o 2 of these also
contain USB activity
during night (shown
in blue)
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Challenges and Limitations




Gathering Data

« How can we observe ‘all” activity to inform insider threat detection?
- Is jt even ethical to observe ‘all’ activity to inform insider threat detection?

* How realistic are synthetic datasets, and how can organisations work with
academia to share data in this area? (Recognising that no organisation
wants to admit the issue of insider threat — let alone share data)

« How can we be sure that we have an accurate model of normality? (Some
companies suggest they do not have a ‘normality’)
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Anomaly != Malicious

«  How do we identify malicious activity — rather than only anomaly?

o Requires human knowledge to distinguish — yet we may struggle
to train a classifier to recognise ‘all’ forms of malicious activity...

o How can the human analyst be more engaged to understand how
the machine processes for detection / prediction are performed?

o How do we separate out responsibility and decisions across
multiple users? (Who guards the guards?)
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Prevention better than cure

- Is it possible to prevent insider threat rather than detect it after the
attack?

o Requires understanding likely behavioural pre-cursors.
< Can we assess behavioural pre-cursors to a potential attack?
«  What data is required for this (e.g., e-mail sentiment)?

- How do we (can we even) address this appropriately and ethically?

 If users understand how their data is being used (e.g., GDPR), can
they not just ‘game’ the detection/prevention systems?
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