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Research Questions

*  How can interactive machine learning and visualisation techniques aid
analysis and understanding in complex threat exploration tasks?

« Can the machine facilitate better data exploration and understanding by
learning and exploiting multi-modal interactions of the user?

«  What can the user learn about the machine’s capability of decision-making
through the inspection of how decisions are computed?

« In contrast to traditional batch learning, can an active learning approach
help improve accuracy, time required, and trust, for both parties?
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HASTE Concept

Given incoming data, HASTE has two forms of utility:

 If the machine is unconfident, query
class with user. User can inspect data

using visual tools and provide response.

Machine observes user interactions to
classifier

learn how response was formulated.

Visual Analytics
Dashboard

Model
Visualisation

- If the machine is confident in classification,  —
assign class to observation and inform user.
User can inspect decision and refine if %_-»-
needed. Machine to try learn why it was ]
incorrect.
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Approach

- DSTL Phase 1: Developing a proof-of-concept tool that can support
research and demonstrate the HASTE concept

« Phase 1 use cases:
o Image-based Road Hazard Exploration
o Text-based exploration of news articles
o Active learning for exploration of object (mis-) classification

« With richer datasets and use cases, we can envisage different modes of
utility for how data observations may require rapid analysis and response

o To be explored for later TRL development phases
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Approach

i
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Rule-base for captioning

Raw Data (text, image, ...)

How can a low-level data observation be transformed into a
high-level concept such as whether a threat is posed?

Modular system design to allow interchangeable use of different components
(e.qg., different object classifiers, data types, feature types, etc.).
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Road Hazard Exploration:

«  Which “objects” are threats and why? il 2al (IYeey

o How do humans identify hazards and
how can machines mimic?

- Object detection — using a combination
of detection models (to integrate both
common + bespoke objects)

- Relationship detection — spatial /
temporal / behavioural.

- Semantic graph — descriptive model of
the image: objects and relationships.

- Threat classifier — receiving a unique
description of each object in the image.

*  Human-in-the-loop - selecting, labeling,
filtering, creating --> understanding
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HASTE Image Analysis Task

Image View

Scene Captioning
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Scene / Object
Captioning

Object Classifier and Selection Positional relationships — key aspects
: highlighted and shown on image

oY S e I S Filter by coloured selection to

using ensemble classifiers : NEE &8 D= elmmate weak indicators

(e.g., COCO deep learning)

(e.g., bespoke 1-shot SVM)

L Threat Class

objects coloured by class,

annczl’ciztijc;r;:);‘er::z\;i;l:sses 7 Can “highlight” key areas based on user gaze User can modify if they disagree with
Can serve as a "filter” of irrelevant machine suggestion — machine will then
information for the machine classifier re-train on new information
Can trigger annotation tool via ‘long gaze’

Opeting \anzg
AND gt offane [3]
=O O o) e mb ar e 2
o)
AND

Threat Reasoning

Orgttotpoviil

Sample Selection
User can observe tree for each objects as evolved

by a Learning Classifier System (LCS) over time that
describes best matched rule for threat class (i.e.,
why machine believes this is threat).

Size indicates number of detected objects.
Colour border indicates potential threats.
Filtering / retrieval based on interactions in other views.
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Additional HASTE Case Studies
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Outcomes and Benefits

« Proof-of-Concept demonstrator tool
o Interface maps to process of how threats are identified and analysed
o User can explore threats to inform machine of threat classifications

o Machine can iteratively learn from each user interaction as new samples
are observed to contribute towards model

— why a threat is posed

o Machine can recognize human interaction patterns for what may constitute
a threat, and can model semantic relationships between objects in scene

— how user identifies threat

« Currently piloting user studies on decision / classifier explainability through
the use of the evolved threat trees
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Future Requirements

«  We wish to explore richer datasets with more tailored challenges for
defence and security needs.

o How can the HASTE concept be deployed with existing ‘'dashboard”
tools to better integrate user analytics and machine collaboration
in current practice?

«  We wish to further explore how human observation data can be
integrated to inform decisions (using eye tracking and/or EEG).

o Currently, eye tracking serves as a 'filter’ of weak indicators.
More to be done on how best to learn about the seqguence of
eye-tracking, and how this becomes generalizable for future
observation tasks
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Thank you

s Dr. Phil Legg
Phil.Legg@uwe.ac.uk
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HASTE
Supplementary Material
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Object Threat Detection

« Given an image with multiple objects

o Which ones are threats? Why?
« Road hazard perception example.

- Object detection — using a combination of
detection models. -

- Relationship detection — spatial / temporal /
behavioural.

- Semantic graph — descriptive model of the image:
objects and relationships.

- Threat classifier — receiving a unique description of
each object in the image.

- Human-in-the-loop - selecting, labeling, filtering,
creating — understanding.
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Object Detection

« A combination of detection models.

- Big data: pre-trained offline models,
where large pre-existing data available.

o (Re)use of general models: e.g., MS COCO,
pre-trained on 90 common objects.

o Leverage existing training data of
domain-specific object types.

— E.g., convolutional neural network trained on labeled crossing patrol officers.
o Accurate detection of previously seen objects that are uniform in appearance.

- Small data: online learning, where little or no data available.
o Leverage human generated labeling at runtime.

o Less accurate, but enables the detection of previously unseen or frequently
changing object types.
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Relationship Detection

« Detection of spatial / temporal /
behavioural relationships between
objects.

» Perspective transformation — e.g., aerial

view to restore the lost depth

dimension.

5 o o Perspective Top-Down
t Det
Oeffee Dizgiem et RRengiiiien Transformation Position View
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Relationship Detection

« Detection of spatial / temporal / behavioural
relationships between objects.

« Conversion of precision numbers to human-

interpretable fuzzy relation sets:

-

P
f%

x-axis position: /eft of, right of —

y-axis position: behind, in front of
z-axis position: above, below

Overall distance: near, far from, on

Direction: fowards, away from

o O O O O
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S emantic Graph zebra zebra pedestrian

on 3
4 on 8
« The semantic graph generates junction 5 on on on
unique descriptions of each object
in the image on left of  lane right of
car 0 1
. i hear left of
rlevel graph expansion. e s ane
o Performed for each desired .
; away from
ObJeCt' towards
o More levels = longer and
detailed.

« Object descriptions / captions S Y

become the inputs to the threat is car,

on [is junction, left of lane],

near [is lane, away from pov, left of lane],
towards [is lane, away from pov, left of lane]

classifier.
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Threat Classifier

« Learning Classifier System — Evolves an ensemble of rules

‘ Object Caption (from semantic graph) ‘

_______________________________________________ Learning
: Threat Label (if ki
Population [P] g ‘ reat Label (if known) ‘
All Rules
IF al THEN c1 :
IF a2 THEN c1 : Update: Genetic
IF a3 THEN c2 i predictions, Algorithm
errors,
fitnesses
Match Set [M] Correct Set [C]
Rules in [P] whose antecedents match Rules in [M] with correct consequent

Wrong Set [W]

Cover Rules in [M] with incorrect consequent

new rule
if [M] is empty

System Prediction
Single best rule

UCS Framework


https://en.wikipedia.org/wiki/Learning_classifier_system
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Classifier Rules

« Rule antecedents encoded as trees:

o Each rule has a match TYPE (car, pedestrian, etc.)
o Each rule has its own set of (abstract) object types [A, B, C, ...]

— Referenceable by the main tree: e.q., near A AND fowards B

— Also encoded as trees with a match type.

— Evaluates True if a matching (concrete) object found within the image.
o (Can be viewed as a search pattern.

BOOLEAN OPERATORS = [AND, OR, NAND, NOR, TRUE]
o PRIMITIVES composed of FUZZY SET and TYPE SET
— FUZZY SET = [on, near, far from, away from, towards, ...]
— TYPE SET = [pov, agent, vehicle, car, truck, pedestrian, ...]
« Rule consequents: [no, low, high]

O
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Example Classifier Rule

«Fitness = 0.2088 Main Rule Antecedent Tree Rule Consequent

Low Threat

+Prediction = 1000.0
*Error = 0.0
*Numerosity = 11
*Experience = 116
«Correct = 116

+Set size = 45.99
*Time = 199

*Human = False towards B
Object A Tree Object B Tree




