
Efficient and Interpretable Real-Time
Malware Detection Using Random-Forest

NODENS

• Current State of Play

• Project Overview - NODENS

• Proposed Method

• Dataset

• Results

• Interpretability

• Further Work

Scope

3

• Machine learning used in lots of proof-of-concept models or as augmentation

• Use of Machine-Learning that incorporate existing tools

• Cuckoo, Sandbox, Anubis, HookMe

• High accuracy, but incur a time penalty

• Computationally expensive

• Little work on the interpretability of decisions

Current State of Play

4

• Malware detection system using Machine Learning

• Identify malware using ‘process signatures’

• Lightweight – can be deployed from a Pi (Tested on a Pi 2B)

• Interpretable output – without sacrificing speed or accuracy

• Average detection speed of 3 – 8 seconds

• Use of re-fitting and end user input

Project Overview – NODENS

5

• PowerShell was used to collect process data from the target VM.

• Chosen as it could be ported between Windows and Linux systems

• Produces 64 features as raw output

• Reduced down to 22 used for classification

• During initial training a Legitimate label was appended to each process, to allow
supervised training of the classifier(s)

• For each entry the process Name is used as the index

Proposed Method

6

• Features used during training

1. Handles 9. NonpagedSystemMemorySize64 17. ProcessorAffinity
2. Path 10. PagedMemorySize64 18. Responding
3. Company 11. PagedSystemMemorySize64 19. TotalProcessorTime
4. Description 12. PeakPagedSystemMemorySize64 20. UserProcessorTime
5. Product 13. PeakWorkingSet64 21. VirtualMemorySize64
6. HasExited 14. PeakVirtualMemorySize64 22. WorkingSet64
7. Handle 15. PrivateMemorySize64
8. HandleCount 16. PrivilegedProcessorTime

Proposed Method

7

• Multiple algorithms were tested against a pool of 55 malware samples

• n samples were randomly selected and run 10 times

• Each time the virtual environment was reset to a clean default state

• Features were captured, manually labelled and tested against:

Random-Forest KNearestNeighbour GradientBoosting
GNB AdaBoost LogisiticRegression
DecisionTree SVC OneClassSVM

Proposed Method

8

Proposed Method

9

• A Random-Forest classifier was trained on all combined training data

• Live testing started, but with an initial detection delay of 30 seconds

• The classifier and supporting scripts were modified and the delay reduced to 3-8
seconds

• Feature selection was found to negatively effect accuracy, so removed and re-trained

Proposed Method

10

Proposed Method

11

• Command line interface to allow for validation or countering of decisions

• Modular ‘plug-in’ scripts

• Start and Stop data collection and detection

• Termination of malicious processes

• Re-fitting of classifier

Proposed Method

12

Proposed Method

13

• A total of 146 malware samples overall (all from OS repositories)

• A total of 1,048,575 processes

• Malware processes were all PE32 (.exe)

• Benginware included

Dataset

Process Classification Number Percentage
Malware 95,191 9%

Benignware 953,384 91%

• Background Processes
• Third party software
• Portable Apps

14

Dataset

Malware Classification Number Percentage

Trojan 47 93%

Ransomware 15 100%

Spyware 15 100%

RAT 7 100%

Bit Coin Miner 3 100%

Process Injector 3 100%

Virus 1 100%

15

• Refitting was included to allow NODENS to ‘learn’ from the malware data

• New process data was saved in a .csv and appended to the training dataset

• This included benignware processes captured within the same time period

• Re-trained using a pickle warm-start

• As a result the training dataset is continually expanding

Dataset – Refitting

16

• Refitting was effective in two ways

1. It showed that NODENS was able to ‘learn’, having identified 5 samples through
refitting

2. This indicates that (among the samples tested) there is an underlying pattern to
behaviour which does indicate a process is malicious

Dataset – Refitting

17

• Dedicated ransomware test was conducted

• 10 unique samples of ransomware

• On average detection was within 9 seconds

• Two outliers

1. 96 seconds

2. 30 seconds

Dataset – Ransomware

18

Dataset – Ransomware

19

• Ransomware was encrypting the CSV process details

• Each time NODENS was forced to wait for a new file

• More robust design is required

Dataset – Ransomware

20

• In addition to OS malware NODENS was tested against custom malware

• Persistent malware created using msfvenom

• NODENS was able to detect all created malware

• It was unable to defeat persistence

• Assessed to be linked to a lower memory footprint when re-initialised

Dataset – Persistence

21

• Initially through manual interrogation of raw CSV process output

• Removal of feature selection made this un-workable

• Modified to produce multiple output formats at point of decision

• CSV

• JSON

• DOT

• PNG

Interpretability

22

CSV output DOT output JSON output

Interpretability

23

PNG output

Interpretability

24

• Binary values

• Benignware samples were largely True or False for all

• Malware samples showed a greater variance

• Variable data

• Benignware processes had on average a higher score

• Some Malware and Benignware processes within the same ‘score bracket’

• Malware processes had (on average) higher amounts of private data

Results

25

• Decision specific data allowed the
confirmation of assessments from manual
interrogation

• * These features appeared twice, with
different threshold values

Root Node Feature Frequency
Processor Affinity 20%

Total Processor Time 16%
User Processor Time 16%

Handle 13%
Path 12%

Product 10%
Privileged Processor Time 3%

Peak Virtual Memory Size64 2%
Paged System Memory Size64* <=2%

Virtual Memory Size64 1%
Handle Count* <=1%

Handles < 1%
Working Set 64 < 1%

Results

26

• The highlighted features had previously
been identified through feature selection

• This lent weight to previous assessments
made during manual interrogation of the
data

Root Node Feature Frequency
Processor Affinity 20%

Total Processor Time 16%
User Processor Time 16%

Handle 13%
Path 12%

Product 10%
Privileged Processor Time 3%

Peak Virtual Memory Size64 2%
Paged System Memory Size64* <=2%

Virtual Memory Size64 1%
Handle Count* <=1%

Handles < 1%
Working Set 64 < 1%

Results

27

• The use of multiple memory features lends weight to assessments regarding malwares
unique memory footprint

• These features are used with low frequency other features are favoured

• This is assessed to be due to some ‘easy win’ metrics

• Malware which deletes it’s own path

• Malware which injects itself into another process

Results

28

• Increased sample size

• Further sample testing

• Bulk data

• Environmentally Aware malware

• Virtually hardened system

• Physical machine testing

• More robust processing system

• Improve or remove shared folder system

Further Work

29

Any Questions?

