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Introduction — Main Idea

 Can a user-trained predictive text
model memorise a secret...

—and can we extract it?

UWE |%ie
orthe




"My password is
Reindeerflotilla"

"Reaction"
"Reestablishment”
"Reindeerflotilla"
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Introduction - Roadmap

» Background — Inference Attacks
and The Secret Sharer

» Methodology — Model

Architecture, Training Data,
Attack Design

» Results & Discussion
» Conclusion and Further Work

UWE | s
orthe




Model Inversion Attacks

« Fredrikson, Jha, and Ristenpart (2015) Model inversion attacks that exploit
confidence information and basic countermeasures

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.
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Memorisation & Exposure

« Carlini et al (2019) The Secret Sharer: Evaluating and Testing Unintended
Memorization in Neural Networks
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Figure 6: Exposure of a canary inserted in a Neural Machine
Translation model. When the canary is inserted four times or
more, it 1s fully memorized.
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Our Approach

"cwxyllopselonvfd"

Text Corpus + Canary {"aaa"

CWX

IIZ..Z.Z"

Encoder

! Training
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Results

Length  No. of
(chars) Words Algorithm Candidates Success%

1000 121 Simple 26.65 90

2000 208 Simple 35.25 95

4000 368 Simple 19.45 60

4000 368 Deep 21952 90

16000 1049 Deep 24389 10
TABLE I

SUMMARY OF RESULTS SHOWING THE SUCCESS OF OUR ALGORITHMS IN
EXTRACTING A PASSWORD EMBEDDED IN VARIABLE-LENGTH TEXT
CORPORA.
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Overtitting?

3.0
—— Validation Loss
—— Training Loss
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- How do we define generalisation? What is the validation set?
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Results in Perspective

* AES-CBC-256 encryption

» Using strongly random key

» Not brute-forceable on human
timescale

— Small chance to crack it with a
3-5-character search?




Conclusions & Future Work

- Language models are vulnerable to
being mined for secrets.

» Mitigations — Sanitisation, Password
construction, Model encryption/SMC

- Larger models, real devices
» GDPR Issues?
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Thank you!

* Any questions?




