Paper by

Gwyn Wilkinson Dr Phil Legg

"What did you say?": Extracting unintentional secrets from predictive text learning systems

3 June 2020

Introduction – Who we are

Gwyn Wilkinson
1st year PhD Student
Computer Science &
Creative Technologies,
Faculty of Environment and Technology
UWE Bristol

Gwyn2.wilkinson@live.uwe.ac.uk

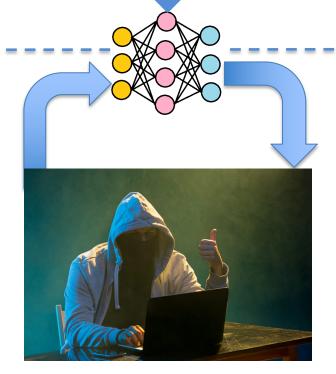
Associate Professor – Cyber Security
Computer Science &
Creative Technologies,
Faculty of Environment and Technology
UWE Bristol

Phil.legg@uwe.ac.uk Plegg.me.uk

Dr Phil Legg

Introduction – Main Idea

 Can a user-trained predictive text model **memorise** a secret...


- and can we **extract** it?

"My password is Reindeerflotilla"

"Reaction"
"Reestablishment"
"Reindeerflotilla"

Introduction - Roadmap

- Background Inference Attacks and The Secret Sharer
- Methodology Model Architecture, Training Data, Attack Design
- Results & Discussion
- Conclusion and Further Work

Model Inversion Attacks

 Fredrikson, Jha, and Ristenpart (2015) Model inversion attacks that exploit confidence information and basic countermeasures

Figure 1: An image recovered using a new model inversion attack (left) and a training set image of the victim (right). The attacker is given only the person's name and access to a facial recognition system that returns a class confidence score.

Memorisation & Exposure

 Carlini et al (2019) The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

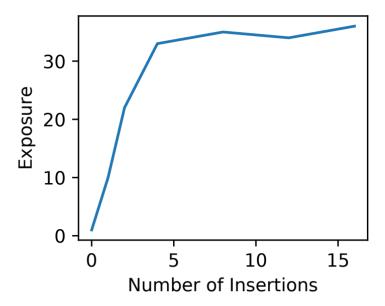
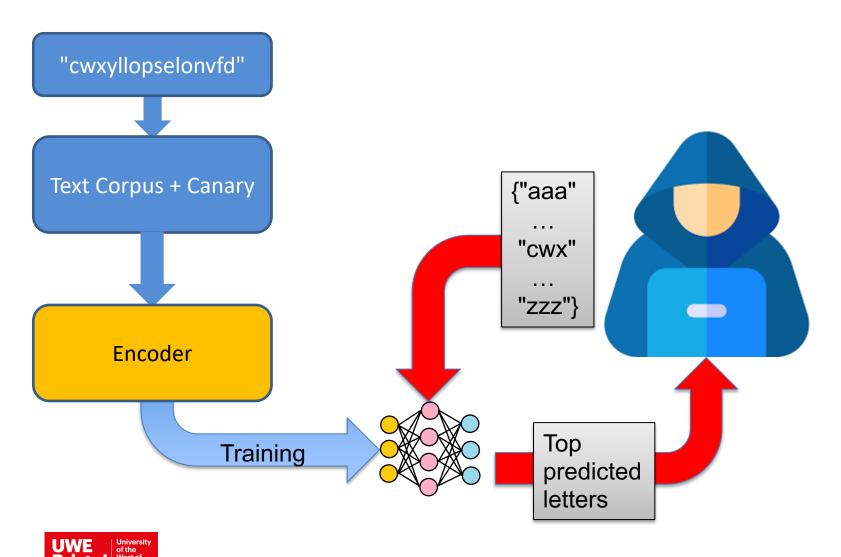
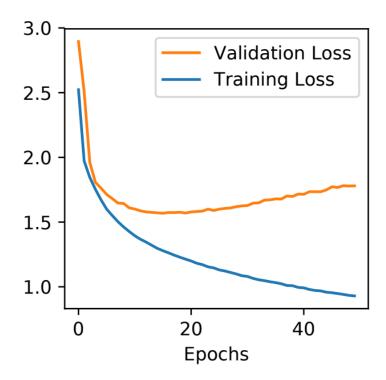



Figure 6: Exposure of a canary inserted in a Neural Machine Translation model. When the canary is inserted four times or more, it is fully memorized.

Our Approach


Results

Length (chars)	No. of Words	Algorithm	Candidates	Success%
1000	121	Simple	26.65	90
2000	208	Simple	35.25	95
4000	368	Simple	19.45	60
4000	368	Deep	21952	90
16000	1049	Deep	24389	10
		TABLE I		

SUMMARY OF RESULTS SHOWING THE SUCCESS OF OUR ALGORITHMS IN EXTRACTING A PASSWORD EMBEDDED IN VARIABLE-LENGTH TEXT CORPORA.

Overfitting?

How do we define generalisation? What is the validation set?

Results in Perspective

- AES-CBC-256 encryption
- Using strongly random key
- Not brute-forceable on human timescale
 - Small chance to crack it with a 3-5-character search?

Conclusions & Future Work

- Language models are <u>vulnerable</u> to being <u>mined for secrets</u>.
- Mitigations Sanitisation, Password construction, Model encryption/SMC
- Larger models, real devices
- GDPR Issues?

Thank you!

Any questions?

