
Sadegh Bamohabbat Chafjiri (sadegh2.bamohabbatchafjiri@live.uwe.ac.uk)

Prof. Phil Legg, Dr.Michail-Antisthenis Tsompanas, Prof. Jun Hong

University of the West of England

Improving Search Space Analysis of
Fuzzing Mutators Using
Cryptographic Structures

Agenda

• Introduction

• Mutation-Based Fuzzing

• Challenges in Fuzzing and Research
Questions

• Proposed Methodology

• Design of the HonggFuzz+

• Experiment Setup

• Results - Bug Detection Ability and Edge
Exploration

• Testing Time Setting

• Future Work and Conclusion

• Acknowledgments and References

Introduction

1. Definition and Purpose:

1. Fuzzing: An automated software testing technique.

2. Focus: Examining software robustness by handling random, unexpected, or malformed inputs.

3. Goal: Uncover and fix unexpected 'corner cases', potentially leading to security vulnerabilities.

2. Research Focus:

1. Exploring the mutation layer of fuzzing techniques.

2. Application of the Confusion-Diffusion principle in mutation layers to uncover complex bugs.

3. This Paper's Contribution:

1. Overview of current fuzzing techniques and testing duration measures.

2. Novel mutation layer adaptation approach using Substitution-Permutation Networks (SPN) and Feistel
Networks (FN) inspired from the cryptoanalysis domain.

3. Proposal of a logarithmic curve fitting method for determining testing time.

4. Comparative performance analysis of new methods against state-of-the-art techniques

Mutation-Based Fuzzing

1. Mutation-Based Fuzzing:

1. Gained popularity for its multi-step process
involving bit, byte, and block-level operations (e.g.,
“seed schedule”, “byte schedule”).

2. Focuses on reducing the input space to valid
inputs while monitoring feedback from outputs.

2. Evolution to Evolutionary Fuzzing:

1. Incorporation of Machine Learning techniques and
evolutionary algorithms, like Genetic Algorithm
(GA), into fuzzing that offers AFL family.

2. These advancements led to significant
improvements in path exploration efficiency and
effectiveness with built-in mutators.

3. Recent Developments:

1. Current research aims to improve the mutation
layer to identify complex bugs in fuzzing tools like
AFL++ and HonggFuzz.

Challenges in Fuzzing/Research Questions

Challenges in
Fuzzing:

Achieving full coverage
remains difficult due to

the infinite range of
possible inputs.

Stochastic nature of
bug-triggering inputs

impacting fuzzing
quality and operational

costs.

Current
Improvements and

Techniques:

Seed selection
optimization using
multi-armed bandit

algorithms and Machine
Learning techniques.

Developments in
symbolic analysis, data

flow tracking, edge
tracing, and semantic-

based fuzzing.

Evolutionary Fuzzing
and Mutation

Scheduling:

AFL and coverage-
guided fuzzing for

complex bug
identification.

Mutation scheduling
schemes like MOPT and
enhanced strategies like

HavocMAB.

Unexplored Areas:

Impact of linear and
non-linear operations in
cryptographic modules

on fuzzing.

Limited research on
applying cryptographic-
like solutions in fuzzing.

Testing Time
Challenge:

Determining a fair
testing duration for
different targets and

fuzzers in our
experimint.

Need for a more
accurate metric than

just “running time” for
testing.

Key Research
Questions (RQs):

RQ1: Can integrating
cryptographic structures

enhance fuzzing
effectiveness?

RQ2: How does the use
of evolutionary

mutators like HonggFuzz
affect fuzzing
effectiveness?

RQ3: What determines
an adequate running

time for fuzzing studies?

RQ4: How do
performance variations
among different fuzzers

change over time?

Proposed Methodology

Integration Objective:

Enhance the ability of
HonggFuzz mutator's memory

swap function (mangle
MemSwap) using SPN and FN.

Aim: Uncover more unique
bugs and discover new edges.

Design Philosophy:

Utilize S-box as a non-linear
cryptographic primitive for

increased input randomness
and better edge exploration.

State-of-the-art mutators
often use linear memory
operations which can be
improved with non-linear

approaches.

Benefits of Non-Linear
Operations:

Introduces dynamic memory
rearrangement through

confusion property of S-box,
enhancing randomization in

the fuzzing process.

Increases complexity of test
cases, challenging software

more effectively.

Aligns with operations in the
mathematical domain of

Galois Field GF(28), a novel
approach in fuzzing which is

based on S-box implemented
on irreducible multi

multinomial

Strengths of the Design:

Non-linearity introduced by S-
boxes enhances input
confusion and output

diffusion.

Improves reliability and
efficiency of the fuzzing

process.

Diversifies fuzzing strategies,
generating high-quality test

cases.

Research Focus:

Effectiveness in vulnerability
detection through rigorous

experimentation

Design of HonggFuzz+

1. SPHongg: Substitution layer with S-box and
linear operations presented in Figure (a)

2. FLHongg: Feistel layer also employing S-box
and linear operations presented in Figure
(b)

Both structures are integrated into the mangle
MemSwap function of HonggFuzz. S-box
based on AES (Rijndael) inverse S-box, offering
non-linear properties.

Experiment
Setup

Fuzzing Targets:

Focus on document
format and image
libraries.

Testing conducted on
Xpdf, libTIFF, and
libexif.

Experiment
Setting:
Comparison of
Honggfuzz+ mutators
with baseline
Honggfuzz, AFL++, and
LibFuzzer.

Duration: 120 hours (5
days) on three targets.

Platform and
Specifications:
Conducted on 10 Kali
Linux VM instances,
2GB RAM each.

Host machine: VMware
Workstation 16 on
Windows 11 Pro, with
10 CPU cores and 64GB
RAM.

Mutators Setting:

Custom mutator setup
in AFL++ using .so files.

Implementation of
SPHongg and FLHongg
as custom mutators of
AFL++.

Fixed seed used for all
experiments.

Results - Bug Detection Ability
and Edge Exploration

Cumulative Unique Bug Counts Across Five Fuzzers and Three Targets over five days

xpdf

libTIFF

libexif

120-Hour Test Result Overview

• Cumulative sum of unique bugs

• Edge exploration amount

• Targets: Xpdf, libTIFF, exif

Key Findings of a 120-hour test:

• HonggFuzz+ structures shows significant improvements in
bug detection compared to HonggFuzz on Xpdf and libTIFF
targets.

• Both HonggFuzz+ structures secured second and third ranks
on Xpdf, with SPHongg surpassing FLHongg on the last day for
the second rank, while FLHongg achieved the first rank on
libTIFF and outperformed LibFuzzer on Xpdf and libTIFF.

• On libexif, while LibFuzzer and HonggFuzz had higher ranks,
FLHongg consistently detected bugs close to AFL++.

• Its adaptable structure can benefit other evolution-based
fuzzers like AFL++ and LibFuzzer.

Cumulative Unique Bug Counts Across Five Fuzzers and Three Targets over five days

xpdf

libTIFF

libexif

Results - Bug Detection Ability
and Edge Exploration

120-Hour Test Result Overview

• Cumulative sum of unique bugs

• Edge exploration amount

• Targets: Xpdf, libTIFF, exif

Key Findings of a 120-hour test:

• HonggFuzz+ structures shows significant improvements in
bug detection compared to HonggFuzz on Xpdf and libTIFF
targets.

• Both HonggFuzz+ structures secured second and third ranks
on Xpdf, with SPHongg surpassing FLHongg on the last day for
the second rank, while FLHongg achieved the first rank on
libTIFF and outperformed LibFuzzer on Xpdf and libTIFF.

• On libexif, while LibFuzzer and HonggFuzz had higher ranks,
FLHongg consistently detected bugs close to AFL++.

• Its adaptable structure can benefit other evolution-based
fuzzers like AFL++ and LibFuzzer.

Cumulative Unique Bug Counts Across Five Fuzzers and Three Targets over five days

xpdf

libTIFF

libexif

Results - Bug Detection Ability
and Edge Exploration

120-Hour Test Result Overview

• Cumulative sum of unique bugs

• Edge exploration amount

• Targets: Xpdf, libTIFF, exif

Key Findings of a 120-hour test:

• HonggFuzz+ structures shows significant improvements in
bug detection compared to HonggFuzz on Xpdf and libTIFF
targets.

• Both HonggFuzz+ structures secured second and third ranks
on Xpdf, with SPHongg surpassing FLHongg on the last day for
the second rank, while FLHongg achieved the first rank on
libTIFF and outperformed LibFuzzer on Xpdf and libTIFF.

• On libexif, while LibFuzzer and HonggFuzz had higher ranks,
FLHongg consistently detected bugs close to AFL++.

• Its adaptable structure can benefit other evolution-based
fuzzers like AFL++ and LibFuzzer.

Testing Time

• Our statistical analysis focuses on mutator performance
patterns over time.

• We examine cumulative unique bug discoveries during ten
fuzzing runs.

• It follows a logarithmic pattern and cumulative sum of
number of bugs falls close to or underneath the logarithmic
curve on the fifth day on all three targets.

Can a logarithm curve approach help to assess how well the
fuzzing performance will continue if a longer test time is used?

Our testing covered the typical 24-hour test as well as up to
120-hour (5 days) testing to assess performance over time.

Further testing should be performed for longer durations – as
well as suitable termination criteria (e.g., terminate once no
new crashes observed within 24 hours).

Xpdf

libTIFF

libexif

Future Work

Broader Target Exploration: Extend the study to encompass a more
extensive array of software targets, including standard benchmarks, to
evaluate the efficiency and effectiveness of fuzzing approaches across a
diverse set of applications.

Benchmark Evaluation: Assess the proposed model's performance
against established benchmarks such as Fuzzbench and Magma to
provide a comprehensive benchmarking framework.

S-Box Module Expansion: Investigate the potential of expanding the
adaptation of the S-box module beyond block-level shuffling to
encompass other bit or byte-level operations, enhancing its versatility.

Impact Assessment: Evaluate the impact of incorporating the S-box
module in lieu of non-linear operations not only within HonggFuzz but
also in the context of other evolutionary fuzzing techniques,
contributing to a comprehensive understanding of the benefits of
cryptographic integration in fuzzing.

Conclusion

HonggFuzz+, an innovative fuzzer that integrates cryptographic
components to optimize the search space, building upon the previous
HonggFuzz implementation.

Bug Detection Capabilities: HonggFuzz+ structures, especially FLHongg,
demonstrated comparable or superior bug detection capabilities when
compared to state-of-the-art evolutionary mutators.

Adaptability: SPN and FN structures showcased adaptability for use in
other evolution-based fuzzers, employing a comparable framework of
non-linear operations.

Fixed Test Time Issue: We highlighted the limitations of fixed testing
durations when comparing different fuzzing approaches, proposing an
alternative approach based on evaluating cumulative bug detection
over time.

Need for Adaptability: Our findings underscore the necessity for a more
nuanced and adaptable evaluation framework for fuzzing
methodologies.

Integration Benefits: HonggFuzz+ showcased remarkable bug detection
capabilities, emphasizing the potential advantages of integrating
cryptographic modules into the software testing and vulnerability
detection toolkit.

Sadegh Bamohabbat Chafjiri (sadegh2.bamohabbatchafjiri@live.uwe.ac.uk)

Prof. Phil Legg, Dr.Michail-Antisthenis Tsompanas, Prof. Jun Hong

University of the West of England

Thank you for your attention

	Slide 1: Improving Search Space Analysis of Fuzzing Mutators Using Cryptographic Structures
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Mutation-Based Fuzzing
	Slide 5: Challenges in Fuzzing/Research Questions
	Slide 6: Proposed Methodology
	Slide 7: Design of HonggFuzz+
	Slide 8: Experiment Setup
	Slide 9: Results - Bug Detection Ability and Edge Exploration
	Slide 10: Results - Bug Detection Ability and Edge Exploration
	Slide 11: Results - Bug Detection Ability and Edge Exploration
	Slide 12: Testing Time
	Slide 13: Future Work
	Slide 14: Conclusion
	Slide 15: Thank you for your attention

