
Artificial Intelligence,

agents, and

what does it mean

for cyber security?

Prof. Phil Legg

Professor in
Cyber Security

Co-Director:
UWEcyber
ACE-CSE

March 2025

About Me
• Professor in Cyber Security

• Co-Director of UWEcyber (NCSC ACE-CSE)

• Cyber Security research theme lead

• Research interests:

o Cyber security, Machine Learning, Data Visualisation

o Insider threat detection, cyber situational awareness, adversarial AI,
privacy-preserving AI, visualisation for explainable AI, cyber resilience…

About Me - Recent Projects

CAVFORTH UMBRELLA SCOUT AI SEC

PhD researchers

• Docker containers vulnerabilities
• Federated learning / privacy preservation
• Cyber-physical systems / digital twins

• Explainable AI in telco

• Rust malware analysis

• LLM security and privacy
• Previous: Adversarial learning
• Previous: Visualisation of AI systems

Cyber Security Data Analytics

How to make effective real-time decisions to
manage Cyber Security challenges and threats,
informed by both human and machine operators?

• Recent Funded projects:
• InnovateUK - Transforming Suspicious Activity Reports

• DSTL - Decision Support in Military Cyber Operations

• DSTL - Human-as-a-Sensor for Mitigating Cyber Threats

• DSTL - Autonomous Resilience for Cyber Defence

Cyber

Security

Machine

Learning

Data

Visualisation

UWEcyber Research

Software, Cloud
and Infrastructure
Security

Container-based,
Software Security, IoT,
CAV, Hardware, Network
security

Cyber Security
Data Analytics

ML for Security, Security
of ML, Explainable AI,
Privacy, Transparency and
Trust

Cyber Crime and
Domestic Cyber
Security

Online Harms, Forensic
Analysis, Dark Web,
Financial Crime,
Geo-politics of cyber

Pedagogical Research for Cyber Security

Effective interactive methods for teaching and learning

Artificial Intelligence,
agents, and
what does it mean
for cyber security?

Generative Pre-trained Transformer
• June 2018: GPT-1 trained on 117 million parameters

• November 2019: GPT-2 trained on 1.5 billion parameters

• June 2020: GPT-3 trained on 175 billion parameters

• November 2022: ChatGPT public release based on GPT-3 model

• Since then: GPT-3.5, GPT-4 (March 2023), GPT-4o, GPT-1o, …

• … and a whole bunch of other models that we now call Large Language Models.

• We also have ‘online’ and ‘offline’ models

o Online: Hosted by 3rd party like OpenAI or Microsoft, latest and most powerful

o Offline: Runs locally, data is kept private (e.g. LMStudio, Ollama, gpt4all)

https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/

https://www.searchenginejournal.com/history-of-chatgpt-timeline/488370/

https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/
https://www.searchenginejournal.com/history-of-chatgpt-timeline/488370/

ChatGPT – Chatbot with Text
• Question/answer-

based user dialog

• Can produce large
volumes of written

text rapidly.

• Tokenised inputs

and outputs

• ‘Next token’
prediction

• Context
maintained by

transformer model

ChatGPT – Chatbot with Code
• Question/answer-

based user dialog

• Can also be used to
generate simple code

examples.

• Dialog means that

human can iteratively
enhance requests to

improve code.

• Can be extended to
many common

languages.

ChatGPT – Token prediction
• Tokens are common sets

of characters found in
text.

• Given a set of previous
input tokens, model
predicts next token.

• Each token has a
numerical ID, that is the
representation used by
the ML algorithm.

• Example poem is 232
tokens (1012 characters)

[637, 142945, 120452, 11, 1919, 1238, 42662, 412, 32, 37716, 3656, 22264,
42326, 558, 976, 8104, 1218, 5621, 11, 290, 8104, 1218, 9848, 412, 3477, 419,
290, 8883, 11, 33507, 290, 4207, 364, 3879, 117729, 3490, 306, 14051, 88090,
412, 1385, 6452, 117028, 107783, 306, 53586, 42636, 412, 976, 132243, 3182,
11, 2973, 52632, 326, 31799, 412, 141068, 290, 35649, 484, 58732, 74, 120452,
364, 32, 55564, 11, 261, 29931, 11, 261, 141350, 21523, 412, 32, 21884, 19523,
2935, 261, 4950, 558, 59509, 3860, 258, 1989, 328, 30877, 116997, 412, 16612,
5532, 316, 39670, 290, 153414, 802, 4121, 364, 976, 72042, 31925, 483, 181822,
9623, 412, 3780, 7281, 8698, 9831, 842, 472, 24384, 558, 59509, 32646, 132962,
11, 48827, 50098, 412, 178295, 1602, 1043, 157907, 376, 175049, 364, 20870,
163407, 326, 90104, 50474, 412, 37, 1600, 259, 1819, 11194, 23749, 558, 7943,

53451, 16601, 11, 1299, 132962, 328, 2890, 412, 1385, 11774, 290, 13586, 11,
27966, 290, 21279, 364, 2653, 1753, 55564, 11, 395, 1753, 6266, 412, 32, 23552,
13717, 11, 261, 2543, 382, 47928, 558, 3436, 2617, 1218, 3490, 11, 1218, 9848,
11, 1218, 1921, 412, 107776, 290, 42636, 328, 7203, 364, 5808, 9338, 290, 9641,
11, 3182, 15164, 11, 3182, 19766, 412, 2653, 306, 495, 3656, 11, 581, 11774,
1373, 722, 558, 2874, 126718, 11777, 38992, 11, 889, 32466, 5060, 127631,
123101, 976, 3357, 409, 328, 290, 30877, 2006, 13]

Tokenised based on GPT-4o model

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

Cyber security LLM tasks
When LLMs meet Cybersecurity: A systematic literature review

• Vulnerability detection

• (In)secure code generation

• Program repairing

• Binary

• IT operations

• Threat intelligence

• Anomaly detection

• LLM assisted attack

• Others…?

https://arxiv.org/pdf/2405.03644

In this review paper, we systematically investigate the application

progress of LLMs in cybersecurity, covering more

than 300 academic papers since 2023. Through an exhaustive

study and comprehensive analysis, we aim to provide a

detailed overview of the current state, challenges, and future

directions of LLM applications in cybersecurity.

https://arxiv.org/pdf/2405.03644

CyberMetric and HarmBench
• CyberMetric: A benchmark dataset of 10,000 questions

evaluating LLM knowledge in cyber security

o https://ieeexplore.ieee.org/document/10679494

• HarmBench is a dataset of malicious queries that can

be tested against an LLM.

• A responsible LLM should not answer these queries –

e.g., guard rails should be in place to control the

possible responses.

• However, can we subvert the responses of the model,

and get them to answer?

o https://www.harmbench.org

https://ieeexplore.ieee.org/document/10679494
https://www.harmbench.org/

Let’s talk agents

Agents
• Agents perform actions to learn about their environment.

• Each action changes the state of the environment.

• Each action may or may not earn a reward.

• Game-based Reinforcement learning is popular use

case as easy to reset the test environment and easy to
map the action space (e.g. game controller).

• Also used in robotics and other simulation environments.

• Reinforcement Learning with Human Feedback
(RLHF) has been key for GPT advancement.

• https://huggingface.co/learn/deep-rl-course/en/unit0/introduction

• https://www.youtube.com/watch?v=qv6UVOQ0F44

• https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html

https://huggingface.co/learn/deep-rl-course/en/unit0/introduction
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html

LLM Agents
• Similar text-based concept

• Given a task (question), a set of tools (e.g.,
code-based actions), and an environment (e.g.,

data) can the LLM provide a suitable answer?

• Tool-calling – generating arguments that

conform to a specific schema (e.g., JSON API

usage) to retrieve an output.

• ReAct Framework (Yao et al., 2022)

• https://arxiv.org/abs/2210.03629

• https://www.langchain.com

• https://microsoft.github.io/autogen/stable/

“By themselves, language models can't take
actions - they just output text. A big use case for

LangChain is creating agents. Agents are systems
that use an LLM as a reasoning engine to

determine which actions to take and what the
inputs to those actions should be. The results of

those actions can then be fed back into the agent
and it determine whether more actions are

needed, or whether it is okay to finish.”

https://python.langchain.com/v0.2/docs/concepts/#agents

https://arxiv.org/abs/2210.03629
https://www.langchain.com/
https://microsoft.github.io/autogen/stable/
https://python.langchain.com/v0.2/docs/concepts/

What is the

weather like

today in Hawaii?

LLM Agents for code execution
• What if our tool was essentially a Python code

interpreter?

• “rather than have an LLM generate the answer directly, it can be
better to have the LLM generate code to calculate the answer, and
then run that code to get the answer.”

• Two in-built tools:

o PythonAstREPLTool

o create_pandas_dataframe_agent

• Use with care – LLM executes code on your device

o allow_dangerous_code must be set True.

Artificial Intelligence,
agents, and
what does it mean
for cyber security?

Cyber Security Data Analytics
• Can an analyst identify suspicious attack activity

within web server logs, or within network traffic?

• Can an analyst identify suspicious user behaviour

within a corporate IT environment?

• Often analysts are dealing with very large, multi-

variate datasets, that can be challenging to examine

in near real-time.

• Can LLM agents help support this task to enhance

human-machine teaming and collaboration?

Examples
• Jupyter notebook environment

o Provides similar chat experience
through iterative coding

• CSV datasets
o Insider threat datasets

o https://insights.sei.cmu.edu/library/insider-threat-

test-dataset/

o Web server log challenges

o https://punksecurity.co.uk/tools/pwnspoof/

• ChatGPT-4 API integrated

o Can use offline models however
suffers perform hit

o Approx $1.81 - $2.76 to find
insider

https://github.com/

pa-legg/llm-agent-

soc/

[currently private –

email me and I can
share on request]

https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://punksecurity.co.uk/tools/pwnspoof/
https://github.com/pa-legg/llm-agent-soc/
https://github.com/pa-legg/llm-agent-soc/
https://github.com/pa-legg/llm-agent-soc/

Examples
• Web server dataset

• 350506 data rows

• Identifying brute force password
attempts

Examples
• Web server dataset

• 350506 data rows

• Recognising suspicious characters
‘%’ within URLs, and inferring

sequence of activity

Examples
• Insider threat dataset

• 5 DataFrames to correlate

• Agent can chain activities together
and attempt to recover from code

errors (e.g., incorrect variable
names).

• Agent can code and execute,

improving hypothesis testing.

o What if the agent generates all
possible hypotheses tests
automatically?

Future development
• LLM agents are rapidly being adopted

• How do we validate their actions for more complex code tasks?

• What if the model and/or code outputs are compromised?

• Software supply chain remains a key security risk

• Offline models help maintain privacy but tradeoff performance

• Reasoning and Acting using LLM broadens the action space
significantly compared to traditional RL.

• Environment could be terminal/command prompt.

• Coding and network deployment all actioned by (multi) agents.

• Rapidly evolving area that will not stand still for long!

Thank you for listening

• Phil.Legg@uwe.ac.uk

• https://people.uwe.ac.uk/Person/PhilLegg

• https://www.linkedin.com/in/prof-phil-legg/

• https://pa-legg.github.io

mailto:Phil.Legg@uwe.ac.uk
https://people.uwe.ac.uk/Person/PhilLegg
https://www.linkedin.com/in/prof-phil-legg/
https://pa-legg.github.io/

Extra

LLM Data Leakage
– is it really an issue?
LLMs (Large Language Models) are not data stores; they are generators.

They predict based on patterns, not memorization. To actually make data leakage
work, three fundamental conditions must be met:

1. Enough references: There must be sufficient occurrences of the data for a
pattern to be predictable enough to extract.

2. Knowledge of the Secret’s Format: You need to know at least part of the secret
or its format to match the pattern so that the LLM can generate the rest.

3. Determining Accuracy: How do you confirm that the response from the
algorithm is accurate and not a hallucination or incorrect prediction?

Here’s a real-life example to illustrate the complexity. Suppose an attacker wants to
retrieve Social Security Numbers (SSNs) accidentally dumped into OpenAI’s LLM.
They would have to create a prompt, know some of the SSN digits, and then ask the
LLM to complete it. Even if they managed to do this, determining the accuracy of

the generated response would be a challenge.
In truth, attempting such an extraction is not only incredibly difficult but also likely
not worth the effort. The way LLMs work doesn’t align with this fear of data leakage.

https://medium.com/csima/demystifing-llms-and-threats-4832ab9515f9

While the risk of data leakage may be overblown in standard
scenarios, it’s important to recognize that there are circumstances
where it becomes a significant threat. Specifically, when an LLM
system uses an orchestration layer, employs agents, or relies on
vector databases to store custom or proprietary data, data leakage
can become a real and accessible danger.
Consider an attacker who is adept at prompt injection. If they
manage to pull data from a vector database, they can extract
secrets or valuable information with great precision. This becomes
even more problematic if agents are connected to other data stores
or information sources.

https://medium.com/csima/demystifing-llms-and-threats-4832ab9515f9

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

