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About Me
• Professor in Cyber Security

• Co-Director of UWEcyber (NCSC ACE-CSE)

• Cyber Security research theme lead

• Research interests:

o Cyber security, Machine Learning, Data Visualisation

o Insider threat detection, cyber situational awareness, adversarial AI, 
privacy-preserving AI, visualisation for explainable AI, cyber resilience…



About Me - Recent Projects

CAVFORTH UMBRELLA SCOUT AI SEC

PhD researchers

• Docker containers vulnerabilities
• Federated learning / privacy preservation
• Cyber-physical systems / digital twins

• Explainable AI in telco

• Rust malware analysis

• LLM security and privacy
• Previous: Adversarial learning
• Previous: Visualisation of AI systems



Cyber Security Data Analytics

How to make effective real-time decisions to 
manage Cyber Security challenges and threats, 
informed by both human and machine operators?

• Recent Funded projects:
• InnovateUK - Transforming Suspicious Activity Reports

• DSTL - Decision Support in Military Cyber Operations

• DSTL - Human-as-a-Sensor for Mitigating Cyber Threats

• DSTL - Autonomous Resilience for Cyber Defence

Cyber 

Security

Machine 

Learning

Data 

Visualisation



UWEcyber Research

Software, Cloud 
and Infrastructure 
Security

Container-based, 
Software Security, IoT, 
CAV, Hardware, Network 
security

Cyber Security 
Data Analytics

ML for Security, Security 
of ML, Explainable AI, 
Privacy, Transparency and 
Trust

Cyber Crime and 
Domestic Cyber 
Security

Online Harms, Forensic 
Analysis, Dark Web, 
Financial Crime, 
Geo-politics of cyber

Pedagogical Research for Cyber Security

Effective interactive methods for teaching and learning
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Generative Pre-trained Transformer
• June 2018: GPT-1 trained on 117 million parameters

• November 2019: GPT-2 trained on 1.5 billion parameters

• June 2020: GPT-3 trained on 175 billion parameters

• November 2022: ChatGPT public release based on GPT-3 model

• Since then: GPT-3.5, GPT-4 (March 2023),  GPT-4o, GPT-1o, …

• … and a whole bunch of other models that we now call Large Language Models.

• We also have ‘online’ and ‘offline’ models

o Online: Hosted by 3rd party like OpenAI or Microsoft, latest and most powerful

o Offline: Runs locally, data is kept private (e.g. LMStudio, Ollama, gpt4all)

https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/

https://www.searchenginejournal.com/history-of-chatgpt-timeline/488370/

https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/
https://www.searchenginejournal.com/history-of-chatgpt-timeline/488370/


ChatGPT – Chatbot with Text
• Question/answer-

based user dialog

• Can produce large 
volumes of written 

text rapidly.

• Tokenised inputs 

and outputs

• ‘Next token’ 
prediction

• Context 
maintained by 

transformer model



ChatGPT – Chatbot with Code
• Question/answer-

based user dialog

• Can also be used to 
generate simple code 

examples.

• Dialog means that 

human can iteratively 
enhance requests to 

improve code.

• Can be extended to 
many common 

languages.



ChatGPT – Token prediction
• Tokens are common sets 

of characters found in 
text.

• Given a set of previous 
input tokens, model 
predicts next token.

• Each token has a 
numerical ID, that is the 
representation used by 
the ML algorithm.

• Example poem is 232 
tokens (1012 characters)

[637, 142945, 120452, 11, 1919, 1238, 42662, 412, 32, 37716, 3656, 22264, 
42326, 558, 976, 8104, 1218, 5621, 11, 290, 8104, 1218, 9848, 412, 3477, 419, 
290, 8883, 11, 33507, 290, 4207, 364, 3879, 117729, 3490, 306, 14051, 88090, 
412, 1385, 6452, 117028, 107783, 306, 53586, 42636, 412, 976, 132243, 3182, 
11, 2973, 52632, 326, 31799, 412, 141068, 290, 35649, 484, 58732, 74, 120452, 
364, 32, 55564, 11, 261, 29931, 11, 261, 141350, 21523, 412, 32, 21884, 19523, 
2935, 261, 4950, 558, 59509, 3860, 258, 1989, 328, 30877, 116997, 412, 16612, 
5532, 316, 39670, 290, 153414, 802, 4121, 364, 976, 72042, 31925, 483, 181822, 
9623, 412, 3780, 7281, 8698, 9831, 842, 472, 24384, 558, 59509, 32646, 132962, 
11, 48827, 50098, 412, 178295, 1602, 1043, 157907, 376, 175049, 364, 20870, 
163407, 326, 90104, 50474, 412, 37, 1600, 259, 1819, 11194, 23749, 558, 7943, 

53451, 16601, 11, 1299, 132962, 328, 2890, 412, 1385, 11774, 290, 13586, 11, 
27966, 290, 21279, 364, 2653, 1753, 55564, 11, 395, 1753, 6266, 412, 32, 23552, 
13717, 11, 261, 2543, 382, 47928, 558, 3436, 2617, 1218, 3490, 11, 1218, 9848, 
11, 1218, 1921, 412, 107776, 290, 42636, 328, 7203, 364, 5808, 9338, 290, 9641, 
11, 3182, 15164, 11, 3182, 19766, 412, 2653, 306, 495, 3656, 11, 581, 11774, 
1373, 722, 558, 2874, 126718, 11777, 38992, 11, 889, 32466, 5060, 127631, 
123101, 976, 3357, 409, 328, 290, 30877, 2006, 13]

Tokenised based on GPT-4o model

https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer


Cyber security LLM tasks
When LLMs meet Cybersecurity: A systematic literature review

• Vulnerability detection

• (In)secure code generation

• Program repairing

• Binary

• IT operations

• Threat intelligence

• Anomaly detection

• LLM assisted attack

• Others…?

https://arxiv.org/pdf/2405.03644

In this review paper, we systematically investigate the application 

progress of LLMs in cybersecurity, covering more

than 300 academic papers since 2023. Through an exhaustive 

study and comprehensive analysis, we aim to provide a

detailed overview of the current state, challenges, and future 

directions of LLM applications in cybersecurity.

https://arxiv.org/pdf/2405.03644


CyberMetric and HarmBench
• CyberMetric: A benchmark dataset of 10,000 questions 

evaluating LLM knowledge in cyber security 

o https://ieeexplore.ieee.org/document/10679494

• HarmBench is a dataset of malicious queries that can 

be tested against an LLM.

• A responsible LLM should not answer these queries – 

e.g., guard rails should be in place to control the 

possible responses.

• However, can we subvert the responses of the model, 

and get them to answer?

o https://www.harmbench.org

https://ieeexplore.ieee.org/document/10679494
https://www.harmbench.org/


Let’s talk agents



Agents
• Agents perform actions to learn about their environment.

• Each action changes the state of the environment.

• Each action may or may not earn a reward.

• Game-based Reinforcement learning is popular use 

case as easy to reset the test environment and easy to 
map the action space (e.g. game controller).

• Also used in robotics and other simulation environments.

• Reinforcement Learning with Human Feedback 
(RLHF) has been key for GPT advancement.

• https://huggingface.co/learn/deep-rl-course/en/unit0/introduction

• https://www.youtube.com/watch?v=qv6UVOQ0F44

• https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html

https://huggingface.co/learn/deep-rl-course/en/unit0/introduction
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html


LLM Agents
• Similar text-based concept

• Given a task (question), a set of tools (e.g., 
code-based actions), and an environment (e.g., 

data) can the LLM provide a suitable answer?

• Tool-calling – generating arguments that 

conform to a specific schema (e.g., JSON API 

usage) to retrieve an output.

• ReAct Framework (Yao et al., 2022)

• https://arxiv.org/abs/2210.03629

• https://www.langchain.com

• https://microsoft.github.io/autogen/stable/

“By themselves, language models can't take 
actions - they just output text. A big use case for 

LangChain is creating agents. Agents are systems 
that use an LLM as a reasoning engine to 

determine which actions to take and what the 
inputs to those actions should be. The results of 

those actions can then be fed back into the agent 
and it determine whether more actions are 

needed, or whether it is okay to finish.”

https://python.langchain.com/v0.2/docs/concepts/#agents

https://arxiv.org/abs/2210.03629
https://www.langchain.com/
https://microsoft.github.io/autogen/stable/
https://python.langchain.com/v0.2/docs/concepts/


What is the 

weather like 

today in Hawaii?



LLM Agents for code execution
• What if our tool was essentially a Python code 

interpreter?

• “rather than have an LLM generate the answer directly, it can be 
better to have the LLM generate code to calculate the answer, and 
then run that code to get the answer.”

• Two in-built tools:

o PythonAstREPLTool

o create_pandas_dataframe_agent

• Use with care – LLM executes code on your device

o allow_dangerous_code must be set True.



Artificial Intelligence, 
agents, and 
what does it mean 
for cyber security?



Cyber Security Data Analytics
• Can an analyst identify suspicious attack activity 

within web server logs, or within network traffic?

• Can an analyst identify suspicious user behaviour 

within a corporate IT environment?

• Often analysts are dealing with very large, multi-

variate datasets, that can be challenging to examine 

in near real-time.

• Can LLM agents help support this task to enhance 

human-machine teaming and collaboration?



Examples
• Jupyter notebook environment

o Provides similar chat experience 
through iterative coding

• CSV datasets
o Insider threat datasets

o https://insights.sei.cmu.edu/library/insider-threat-

test-dataset/

o Web server log challenges

o https://punksecurity.co.uk/tools/pwnspoof/

• ChatGPT-4 API integrated

o Can use offline models however 
suffers perform hit

o Approx $1.81 - $2.76 to find 
insider

https://github.com/

pa-legg/llm-agent-

soc/

[currently private – 

email me and I can 
share on request]

https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://insights.sei.cmu.edu/library/insider-threat-test-dataset/
https://punksecurity.co.uk/tools/pwnspoof/
https://github.com/pa-legg/llm-agent-soc/
https://github.com/pa-legg/llm-agent-soc/
https://github.com/pa-legg/llm-agent-soc/


Examples
• Web server dataset

• 350506 data rows

• Identifying brute force password 
attempts



Examples
• Web server dataset

• 350506 data rows

• Recognising suspicious characters 
‘%’ within URLs, and inferring 

sequence of activity



Examples
• Insider threat dataset

• 5 DataFrames to correlate

• Agent can chain activities together 
and attempt to recover from code 

errors (e.g., incorrect variable 
names).

• Agent can code and execute, 

improving hypothesis testing.

o What if the agent generates all 
possible hypotheses tests 
automatically?



Future development
• LLM agents are rapidly being adopted

• How do we validate their actions for more complex code tasks?

• What if the model and/or code outputs are compromised?

• Software supply chain remains a key security risk

• Offline models help maintain privacy but tradeoff performance

• Reasoning and Acting using LLM broadens the action space 
significantly compared to traditional RL.

• Environment could be terminal/command prompt.

• Coding and network deployment all actioned by (multi) agents.

• Rapidly evolving area that will not stand still for long!



Thank you for listening

• Phil.Legg@uwe.ac.uk

• https://people.uwe.ac.uk/Person/PhilLegg

• https://www.linkedin.com/in/prof-phil-legg/

• https://pa-legg.github.io

mailto:Phil.Legg@uwe.ac.uk
https://people.uwe.ac.uk/Person/PhilLegg
https://www.linkedin.com/in/prof-phil-legg/
https://pa-legg.github.io/


Extra



LLM Data Leakage 
– is it really an issue?
LLMs (Large Language Models) are not data stores; they are generators. 

They predict based on patterns, not memorization. To actually make data leakage 
work, three fundamental conditions must be met:

1. Enough references: There must be sufficient occurrences of the data for a 
pattern to be predictable enough to extract.

2. Knowledge of the Secret’s Format: You need to know at least part of the secret 
or its format to match the pattern so that the LLM can generate the rest.

3. Determining Accuracy: How do you confirm that the response from the 
algorithm is accurate and not a hallucination or incorrect prediction?

Here’s a real-life example to illustrate the complexity. Suppose an attacker wants to 
retrieve Social Security Numbers (SSNs) accidentally dumped into OpenAI’s LLM. 
They would have to create a prompt, know some of the SSN digits, and then ask the 
LLM to complete it. Even if they managed to do this, determining the accuracy of 

the generated response would be a challenge.
In truth, attempting such an extraction is not only incredibly difficult but also likely 
not worth the effort. The way LLMs work doesn’t align with this fear of data leakage. 

https://medium.com/csima/demystifing-llms-and-threats-4832ab9515f9

While the risk of data leakage may be overblown in standard 
scenarios, it’s important to recognize that there are circumstances 
where it becomes a significant threat. Specifically, when an LLM 
system uses an orchestration layer, employs agents, or relies on 
vector databases to store custom or proprietary data, data leakage 
can become a real and accessible danger.
Consider an attacker who is adept at prompt injection. If they 
manage to pull data from a vector database, they can extract 
secrets or valuable information with great precision. This becomes 
even more problematic if agents are connected to other data stores 
or information sources.

https://medium.com/csima/demystifing-llms-and-threats-4832ab9515f9
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